Inequalities for integral mean values
نویسندگان
چکیده
منابع مشابه
New integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملIntegral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملIntegral inequalities for algebraic polynomials
In this paper we consider two extremal problems for algebraic polynomials in L 2 metrics. (1) Let Pn be the class of all algebraic polynomials P(x) = akxk of degree at most nand IJPllda= (fIR IP(x)1 2 da(x))1/2, where da(x) is a nonnegative measure on lit We determine the best constant in the inequality lakl:::; Cn,k(da)IJPl!da-, for k = O,l, ... ,n, when P E Pn and such that = 0, k = 1, ... ,m...
متن کاملInequalities for General Integral Means
We modify the definition of the weighted integral mean so that we can compare two such means not only upon the main function but also upon the weight function. As a consequence, some inequalities between means are proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1977
ISSN: 0022-247X
DOI: 10.1016/0022-247x(77)90164-0